3.873 \(\int \frac{f+g x}{(d+e x) \sqrt{a+b x+c x^2}} \, dx\)

Optimal. Leaf size=131 \[ \frac{(e f-d g) \tanh ^{-1}\left (\frac{-2 a e+x (2 c d-b e)+b d}{2 \sqrt{a+b x+c x^2} \sqrt{a e^2-b d e+c d^2}}\right )}{e \sqrt{a e^2-b d e+c d^2}}+\frac{g \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{\sqrt{c} e} \]

[Out]

(g*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(Sqrt[c]*e) + ((e*f - d*g)*ArcTanh[(b*d - 2*a*e + (
2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/(e*Sqrt[c*d^2 - b*d*e + a*e^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0932019, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {843, 621, 206, 724} \[ \frac{(e f-d g) \tanh ^{-1}\left (\frac{-2 a e+x (2 c d-b e)+b d}{2 \sqrt{a+b x+c x^2} \sqrt{a e^2-b d e+c d^2}}\right )}{e \sqrt{a e^2-b d e+c d^2}}+\frac{g \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{\sqrt{c} e} \]

Antiderivative was successfully verified.

[In]

Int[(f + g*x)/((d + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(g*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(Sqrt[c]*e) + ((e*f - d*g)*ArcTanh[(b*d - 2*a*e + (
2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/(e*Sqrt[c*d^2 - b*d*e + a*e^2])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{f+g x}{(d+e x) \sqrt{a+b x+c x^2}} \, dx &=\frac{g \int \frac{1}{\sqrt{a+b x+c x^2}} \, dx}{e}+\frac{(e f-d g) \int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx}{e}\\ &=\frac{(2 g) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x}{\sqrt{a+b x+c x^2}}\right )}{e}-\frac{(2 (e f-d g)) \operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x}{\sqrt{a+b x+c x^2}}\right )}{e}\\ &=\frac{g \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{\sqrt{c} e}+\frac{(e f-d g) \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x+c x^2}}\right )}{e \sqrt{c d^2-b d e+a e^2}}\\ \end{align*}

Mathematica [A]  time = 0.151974, size = 126, normalized size = 0.96 \[ \frac{\frac{(d g-e f) \tanh ^{-1}\left (\frac{2 a e-b d+b e x-2 c d x}{2 \sqrt{a+x (b+c x)} \sqrt{e (a e-b d)+c d^2}}\right )}{\sqrt{e (a e-b d)+c d^2}}+\frac{g \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+x (b+c x)}}\right )}{\sqrt{c}}}{e} \]

Antiderivative was successfully verified.

[In]

Integrate[(f + g*x)/((d + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

((g*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])])/Sqrt[c] + ((-(e*f) + d*g)*ArcTanh[(-(b*d) + 2*a*e
- 2*c*d*x + b*e*x)/(2*Sqrt[c*d^2 + e*(-(b*d) + a*e)]*Sqrt[a + x*(b + c*x)])])/Sqrt[c*d^2 + e*(-(b*d) + a*e)])/
e

________________________________________________________________________________________

Maple [B]  time = 0.271, size = 349, normalized size = 2.7 \begin{align*}{\frac{g}{e}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx+a} \right ){\frac{1}{\sqrt{c}}}}+{\frac{dg}{{e}^{2}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}+{\frac{be-2\,cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c+{\frac{be-2\,cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}}}}}-{\frac{f}{e}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}+{\frac{be-2\,cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c+{\frac{be-2\,cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}-bde+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(1/2),x)

[Out]

1/e*g*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)+1/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b
*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*
e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))*d*g-1/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b
*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e
^2)^(1/2))/(d/e+x))*f

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{f + g x}{\left (d + e x\right ) \sqrt{a + b x + c x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)/(e*x+d)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((f + g*x)/((d + e*x)*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError